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Abstract

The hydroelastic vibrations of a beam with rectangular cross-section is analyzed under the effect of an
uniformly moving single axle vehicle using modal analysis and two-dimensional potential flow theory of the
fluid neglecting the effect of surface waves aside the beam. For the special case of homogeneous beam
resting on the surface of a water filled prismatic basin, the normal modes are determined considering
surface waves in beam direction under the condition of compensating the volume of the enclosed fluid. The
way to determine the vertical acceleration of the single axle vehicle is shown, which governs the response of
the system. As analysis results the course of wheel load, the surface waves along the beam and the flow
velocity distribution of the fluid is demonstrated for a continuous floating bridge under the passage of a
rolling mass moving with uniform speed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration analysis of elastic structures under the effect of crossing vehicles is one of the
main items for the discipline of structural dynamics (see Ref. [1] with exhaustive sources). At first,
Stokes [2] solved the dynamic problem of a rolling mass crossing an elastic single span beam by
neglecting the beam mass and using numerical series for solving the differential equation of beam.
Later, Zimmermann [3] found the exact mathematical solution of this problem. Moreover,
analytical solutions are given by Schallenkamp [4] considering the beam mass, Marquard [5]
modeling the vehicle by two masses connected with spring and Ryazanova [29], who determined
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the vertical course of an accelerated single mass using integral equation. The comprehensive
works of Schuetz [6] and Drosner [7] solved the problem of coupled bridge–vehicle interaction
numerically considering also the unevenness of roadway as well as contact loosing wheels.
Pontoon bridges were used since antiquity to cross wide rivers [8,9]. One of the most well-

known pontoon bridges of Europe is the double storey steel pontoon bridge in Istanbul spanning
over the Bosporos, which was constructed in the beginning of the 20th century. In the USA, the
floating concrete Bridge across Hood Canal [10], which was constructed in 1960, suffered severe
damages during stormy weather in 1979 [11]. Floating bridges usually are designed either by
applying the theory of beams on elastic foundation and neglecting hydrodynamic effects, or more
realistically by considering hydrodynamic effects using hydrodynamic masses and dampers
[12,13,28] as well as strip theory [14]. Strip theory means dividing the floating structure into slices
transverse to its longitudinal direction with plane flow along each slice. The effect of flow in
longitudinal direction of the structure can be considered only approximately (Lewis-factor) and is
of minor significance compared with the transverse flow due to waves and gusty winds, if the
pontoon width or wavelength of surface waves is small compared with the distance of structural
vibration nodes [15]. Based on this theory, for instance vibrations of pontoon bridges due to wave
excitation were analyzed using finite element method (FEM) [15–17]. In case of traffic loaded
lightweight pontoon bridges, like for instance military pontoon bridges, the flow in longitudinal
bridge direction cannot be neglected caused by gravity waves running parallel with the structure
[18]. For instance runways on floating ice in arctic regions were analyzed by Chonan [19] and
Sneyd et al. [20–22] using the model of hydroelastic floating slab with infinite extension under the
effect of running constant forces and solving the problem by the application of integral
transforms.
Many investigations exist on the analysis of unforced hydroelastic structural vibrations. One of

the first was Lamb [23], who determined the first and second coupled mode of a circular slab with
water contact on one side applying Ritz method. Nowadays contributions are the analytical
calculation of the coupled natural frequencies by Grim [24] for floating slabs spanning in one
direction as well as by Bauer [25] for floating rectangular slabs and by Bauer/Eidel [26] for
membrane spanning in one direction and floating on fluid filled rectangular tank. The dynamic
differential equation of the floating structure was solved using Fourier series. The fluid was
assumed frictionless and incompressible, except [19], and the fluid’s behavior was described by
linear potential theory, except [26].
In the following the linear theory of instationary hydroelastic vibrations will be applied on a

homogeneous beam with rectangular cross-section under the effect of an uniformly moving single
axle vehicle modeling traffic induced vibrations of a continuous pontoon bridge. For the coupled
fluid–beam–vehicle problem two-dimensional flow parallel span and in depth direction will be
considered. The problem will be solved analytically using modal analysis with Fourier series for
the modes [27].

2. Problem

The floating beam to be investigated shall have homogeneous rectangular cross-section and
fixed end supports allowing free end rotation; this is a suitable model for continuous floating
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bridges with closely connected pontoons and ramps pressed to the banks. The riverbed shall have
rectangular cross-section with rigid borderlines and shall contain still water (Fig. 1). The radiation
of surface waves transverse to the beam bridge shall be neglected or shall be excluded by structural
countermeasures like for instance rigid sheet piles or walls, so that plane water flow can be
assumed along the beam in the fluid below.
The fluid is assumed incompressible and ideal one with non-rotational flow having the potential

Fðx; z; tÞ; the local differentials of which are used to describe the flow velocity in each direction,
and observing the physical law

@2F
@x2

þ
@2F
@z2

¼ 0: ð1Þ

The water pressure pðx; z; tÞ within the fluid can be deducted from the in-stationary Bernoulli-
equation

@F
@t

þ
v2

2
� gz þ

p � p0

rF

¼ 0: ð2Þ

If the non-linear pressure rF v2=2 caused by the square of flow velocity v will be neglected, the
following linear partial differential equation will describe the forced hydroelastic vibrations of the
floating homogeneous Rayleigh-beam (see Appendix A):

m
@2 *wðx; tÞ

@t2
� rI

@2

@t2
@2 *wðx; tÞ

@x2

� �
þ rF gb *wðx; tÞ � rF b

@Fðx; h; tÞ
@t

þ EI
@4 *wðx; tÞ

@x4
þ ra

@ *wðx; tÞ
@t

þ riI
@

@t

@4 *wðx; tÞ
@x4

� �
¼ dðx � ctÞPðtÞ: ð3Þ

In this differential equation r is the density of the beam material, rF is the density of the fluid, b

is the beam width, I is the second moment of beam cross-section, E is the modulus of elasticity of
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Fig. 1. System and load of the concerned floating bridge (a) longitudinal section, (b) cross-section, (c) model.
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beam material, m is the uniformly distributed beam mass, ra is the environmental and ri is the
internal viscous damping constant of the beam and g is the gravity. Due to the lack of internal
fluid friction and excluded lateral radiation of surface waves, there will occur no hydrodynamic
damping, and only air as well as material damping will be effective. d is the Dirac-function and
PðtÞ is the wheel load of the single axle vehicle running with uniform speed c along the centerline
of the bridge according to Fig. 2. The dynamic deflection of the beam *wðx; tÞ describes the
vibration around the static deflection of the beam %wðxÞ: The ordinate z ¼ h indicates the distance
between the sub-surface of beam and the undisturbed water surface z ¼ 0; and for simplicity can
be assumed zero or equal to the static submerged depth of the beam.
The boundary conditions for the simple beam with free end-rotation are as follows:

*wð0; tÞ ¼ *wðl; tÞ ¼ 0;
@2 *wðx; tÞ

@x2

����
x¼0

¼
@2 *wðx; tÞ

@x2

����
x¼l

¼ 0 ð4Þ

and for the flow velocity of the fluid perpendicular to the borderlines of the rigid basin

@F
@x

����
x¼0

¼
@F
@x

����
x¼l

¼
@F
@z

����
z¼d

¼ 0: ð5Þ

Along the sub-surface of the beam the vertical velocity of beam and fluid are the same, in other
words, there the following compatibility condition must be met:

@F
@z

����
z¼h

¼
@ *w

@t
: ð6Þ

As the beam always shall be in contact with the enclosed fluid, the beam deflection line
must meet the condition to compensate the displaced incompressible fluid volume as follows
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(cf. Ref. [24]): Z l

0

*wðx; tÞ dx ¼ 0: ð7Þ

The wheel force of the single axle vehicle acting on track as shown in above Fig. 2 can be
described according to Ref. [27] by

PðtÞ ¼ c0 þ c1g1ðtÞ þ c2g2ðtÞ � c3 .v1ðtÞ �
Z l

0

.v1ðtÞ½c4g1ðt � tÞ þ c5g2ðt � tÞ� dt ð8Þ

using expressions, which are explained in Appendix B.

3. Hydroelastic free vibrations

The differential equation describing free hydroelastic transverse vibration of the concerned
beam can be derived from Eq. (3) without using the expressions for the damping and the external
wheel force:

m
@2 *wðx; tÞ

@t2
� rI

@2

@t2
@2 *wðx; tÞ

@x2

� �
þ rF gb *wðx; tÞ � rF b

@Fðx; h; tÞ
@t

þ EI
@4 *wðx; tÞ

@x4
¼ 0: ð9Þ

The free vibration *wðx; tÞ of the beam and Fðx; z; tÞ of the fluid must satisfy the boundary
conditions (4)–(6) and condition (7) for compensating the displaced incompressible fluid volume.
The solution of the Laplace differential Eq. (1) is the potential

Fðx; z; tÞ ¼ ioeiotl2 %Fðx; zÞ ð10Þ

with the dimensionless potential mode as Fourier-cosine series with period 2l

%Fðx; zÞ ¼
%A0

2
þ

XN
m¼1

%Am
coshðmpd=lÞð1� z=dÞ

coshðmpd=lÞ
cosðmpx=lÞ: ð11Þ

Hereby, l is the beam length, o is the natural circular frequency and i ¼
ffiffiffiffiffiffiffi
�1

p
: The constant

factor iol2 was used in order to get real Fourier coefficients (18a) and (26) when later satisfying
the compatibility condition (6).
For the hydroelastic free vibration of the beam, the following separation approach will be

applied:

*wðx; tÞ ¼ eiotlc0ðx=lÞ

with the definition of dimensionless mode function

c0ðx=lÞ :¼ %c0ðxÞ

representing the deflection line of the hydroelastic free beam vibration. Based on above-
mentioned approach and definition the deflection line of the hydroelastic free vibrating beam and
its four differentials generally can be expressed by the formula

@j *wðx; tÞ
@xj

¼ eiot
%cjðxÞ
lj�1 ; j ¼ 0; 1; 2; 3; 4 ð12aÞ
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with %cjðxÞ as the dimensionless mode function of beam representing the jth local differential of the
deflection line, defined as follows (the symbol ‘‘:¼’’ means ‘‘definition’’)

d %cjðxÞ
dx

:¼
1

l
%cjþ1ðxÞ: ð12bÞ

In the following, the function %c0ðxÞ will be called beam mode. Inserting the potential function
(10) and the seperation approach (12a) into the differential equation of beam (9) will result in the
homogeneous equation

ð� %o2 þ a1Þ %c0ðxÞ þ a3 %o2 %c2ðxÞ þ a2 %o2 %Fðx; hÞ þ %c4ðxÞ ¼ 0 ð13Þ

with the square power of the dimensionless natural circular frequency

%o2 :¼
o2ml4

EI
ð14aÞ

as eigenvalue and with the dimensionless parameters

a1 :¼
rF gbl4

EI
; a2 :¼

rF bl

m
; a3 :¼

rI

ml2
ð14bÞ

as coefficients representing the effect of elastic beam foundation (a1), of hydrodynamics (a2) and
of beam gyration (a3). Due to the symmetry of the system the vibrating beam will have antimetric
(i.e., uneven) and symmetric (i.e., even) modes %c0ðxÞ: Antimetric beam modes automatically meet
condition (7) for compensating the displaced incompressible fluid volume. If describing the
antimetric beam modes by Fourier-sine series with period 2l

%c0ðxÞ ¼
XN

n¼2;4;y

%Wð0Þ
n sinðnpx=lÞ ð15Þ

automatically the boundary conditions (4) of the beam are met. By differentiation of each term in
series (15) we get the first four (j ¼ 1; 2; 3; 4) dimensionless mode functions by differentiation of
each term in series (15) observing definition (12b). Especially, the 2nd and 4th differential
(j ¼ 2; 4) is

%cjðxÞ ¼
XN

n¼2;4;y

%WðjÞ
n sinðnpx=lÞ; j ¼ 2; 4 ð16Þ

with

%Wð2Þ
n ¼ �ðnpÞ2 %Wð0Þ

n ; n ¼ 2; 4;y;

%Wð4Þ
n ¼ ðnpÞ4 %Wð0Þ

n ; n ¼ 2; 4;y:
ð17Þ

Inserting the potential function (10) and the beam deflection (12a) (j ¼ 0) into the compatibility
condition (6), replacing the dimensionless modes by series (11) respectively (15), multiplying both
sides with 2=l cosðspx=lÞ; s ¼ 1; 2;y and integrating each term of the series from x ¼ 0 to l
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we get

%Am ¼ �
1

mp
coshðmpd=lÞ

sinhðmpd=lÞð1� h=dÞ
P

N

n¼2;4;y
%Wð0Þ

n anm; anm :¼
4

p
n

n2 � m2
for m ¼ 1; 3;y;

%Am ¼ 0 for m ¼ 2; 4;y: ð18aÞ

Obviously the potential function (11) is antimetric. Therefore, the constant of series (11) must
disappear, i.e.,

%A0 ¼ 0: ð18bÞ

Inserting the Fourier-series (11), (15) and (16) into Eq. (13), multiplying both sides with
2=l sinðspx=lÞ; s ¼ 2; 4;y and then integrating each term from x ¼ 0 to x ¼ l results in the
following general eigenproblem considering expressions (17) and (18a) for the Fourier-coefficients

ð½B� � l½A�Þx ¼ 0; ¼ 1= %o2 ð19Þ

with

xT ¼ ð %W
ð0Þ
2 ; %W

ð0Þ
4 ;y; %Wð0Þ

s ;yÞ; s ¼ 2; 4;y ð20aÞ

and the coefficients of matrix [A]

asn ¼

a1
s4

þ p4 for n ¼ s;

0 for nas

8<
: ð20bÞ

as well as the coefficients of matrix [B]

bsn ¼
a2
s4

XN
m¼1;3;y

cothðmpd=lÞð1� h=dÞ
mp

asmanm þ
1

s2

1

s2
þ a3p2 for n ¼ s;

0 for nas

8<
: ð20cÞ

for s ¼ 2;4, y and n ¼ 2;4,y each.
Symmetric modes must be adjusted to condition (7) to compensate the displaced incompressible

fluid volume. Using the Fourier-cosine series of period 2l to describe symmetric beam modes

%c0ðxÞ ¼
%B
ð0Þ
0

2
þ

XN
n¼2;4;y

%Bð0Þ
n cosðnpx=lÞ ð21Þ

this adjustment occurs by zero setting of the constant, i.e.,

%B
ð0Þ
0 ¼ 0: ð22Þ

Moreover, the dimensionless mode functions for the four differentials of the beam deflection
line also shall be expressed by Fourier-cosine series

%cjðxÞ ¼
%B
ðjÞ
0

2
þ

XN
n¼1

%BðjÞ
n cosðnpx=lÞ; j ¼ 1; 2; 3; 4: ð23Þ
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Based on the series for %c4ðxÞ all Fourier coefficients can be expressed by the coefficients %Bð4Þ
n using

integration of each term and considering the boundary conditions (4). Especially, the Fourier
coefficients for the symmetric beam mode (j ¼ 0) and its second differential (j ¼ 2) are as follows
according to Ref. [27]:

%B
ð0Þ
0 ¼

%B
ð4Þ
0

120
�
2

p4
XN

n¼2;4;y

%Bð4Þ
n

n2
p2

12
þ
1

n2

� �
; ð24aÞ

%Bð0Þ
s ¼

�
%B
ð4Þ
0

p4s2
p2

12
þ
1

s2

� �
þ
2

p4s2
P

N

n¼2;4;y

%Bð4Þ
n

n2
þ

%Bð4Þ
s

p4s4
; s ¼ 2; 4;y;

0; s ¼ 1; 3;y;

8><
>: ð24bÞ

%B
ð2Þ
0 ¼ �

%B
ð4Þ
0

12
þ
2

p2
XN

n¼2;4;y

%Bð4Þ
n

n2
; ð24cÞ

%Bð2Þ
s ¼

%B
ð4Þ
0

p2s2
�

%Bð4Þ
s

p2s2
; s ¼ 2; 4;y;

0; s ¼ 1; 3;y:

8><
>: ð24dÞ

Inserting expression (24a) into condition (22) will give

%B
ð4Þ
0 ¼

240

p4
XN

n¼2;4;y

%Bð4Þ
n

n2
p2

12
þ
1

n2

� �
: ð25Þ

Inserting the potential function (10) and the beam deflection line (12a) (j ¼ 0) into the
compatibility condition (6) as well as replacing the dimensionless modes by series (11) respectively
(21) we get after comparison of coefficients

%Am ¼
�

%B 0ð Þ
m

mp
coshðmpd=lÞ

sinhðmpd=lÞð1� h=dÞ
; m ¼ 2; 4;y;

0; m ¼ 1; 3;y;

8><
>: ð26Þ

i.e., the potential function (11) is symmetric.
Inserting the Fourier-series (11), (21) and (23) into Eq. (13), multiplying both sides with

2=l cosðspx=lÞ; s ¼ 0; 2; 4;y and finally integrating each term from x ¼ 0 to l will give for s ¼ 0
under consideration of expressions (22), (24c) and (25)

%A0 ¼
�2

p2a2 %o2
XN

n¼2;4;y

%Bð4Þ
n

n2
120

p2
p2

12
þ
1

n2

� �
1�

a3 %o2

12

� �
þ a3 %o2


 �
ð27Þ

and for s ¼ 2; 4;y under consideration of expressions (24b), (24d), (26) and (25) the general
eigenproblem (19) with

xT ¼ ð %Bð4Þ
2 ; %Bð4Þ

4 ;y; %Bð4Þ
s ;yÞ; s ¼ 2; 4;y ð28aÞ
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and the coefficients of matrix [A]

asn ¼
2a1

p4s2n2
�120
p4

p2

12
þ
1

s2

� �
p2

12
þ
1

n2

� �
þ 1


 �
þ

1þ
a1
p4s4

for n ¼ s;

0 for nas

8<
: ð28bÞ

as well as the coefficients of matrix [B]

bsn ¼
2

p4s2n2
�120
p4

p2

12
þ
1

s2

� �
p2

12
þ
1

n2

� �
þ 1


 �
1þ a2

coth
spd

l
1�

h

d

� �
sp

2
664

3
775

�
240a3
p6s2n2

p2

12
þ
1

n2

� �
þ

1

p4s4
1þ a2

coth
spd

l
1�

h

d

� �
sp

2
664

3
775þ

a3
p2s2

for n ¼ s;

0 for nas

8>>>>><
>>>>>:

ð28cÞ

for s ¼ 2; 4;y and n ¼ 2; 4;y each. The Fourier coefficients of the symmetric beam modes (21)
can be calculated using Eq. (24b). In order to exactly meet the boundary conditions (4), the
symmetric beam modes %c0ðxÞ shall be re-calculated into Fourier-sine series resulting in

%c0ðxÞ ¼
XN

n¼1;3;y

%Wð0Þ
n sinðnpx=lÞ ð29Þ

with

%Wð0Þ
n ¼

XN
s¼2;4;y

%Bð0Þ
s ans; n ¼ 1; 3;y;

ans :¼
4

p
n

n2 � s2
; n ¼ 1; 3;y; s ¼ 2; 4;y: ð30Þ

For the general eigenproblem (19) with eigenvector (20a) respectively (28a) an infinite number
p ¼ 1; 2;y of hydroelastic beam modes %c0pðxÞ and related natural circular frequencies %op exist.
For example the hydroelastic free vibrations of a continuous floating bridge shall be

investigated with parameters as follows:

a1 ¼ 371160:7180; a2 ¼ 832:9910; a3 ¼ 1:2023� 10�7;

a8 :¼ d=l ¼ 1:8667� 10�2; a9 :¼ h=d ¼
1

a2a8
¼ 6:4312� 10�2: ð31Þ

Fig. 3 shows the first four beam modes %c0pðxÞ; p ¼ 1; 2; 3; 4 drawn as continuous curve and the
related natural circular frequency %op: For comparison the modes of the same beam on elastic
foundation are indicated by dashed curve, and the related natural circular frequency is given in
brackets. The influence of the elastic foundation is given by the above dimensionless parameter a1
defined by Eq. (14b). The continuous uniform spring stiffness of the elastic foundation is given by
the constant value rF gb in t/m2 with the specific weight of the fluid (water) rF g ¼ 1; 0 t/m3 and the
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beam width b in m. Fig. 3 was based on a continuous light weight pontoon bridge made of steel
with parameters taken from the example in below chapter 6.
The analysis was carried out using 50 Fourier-coefficients for each beam mode, in order to

avoid a gap at both ends of the beam vibrating with symmetric beam modes, which are calculated
using Fourier-cosine series, and to get sufficient accuracy for the natural circular frequencies. The
basic hydroelastic beam mode %c01ðxÞ is an antimetric curve because of the condition to
compensate the displaced incompressible fluid volume. Compared with the beam on elastic
foundation the values of natural circular frequency for the hydroelastic beam are essentially
smaller and have larger intervals. The reason for the much lower values of the natural circular
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Fig. 3. (a–d) The first four dimensionless beam modes and related natural circular frequencies of the continuous

floating bridge chapter 6 as hydroelstic system (——) and as beam on elastic foundation (- - - - -; circular frequencies in

brackets). a 1. mode: %o1 ¼ 9:3083 ð610:5059Þ; b 2. mode: %o2 ¼ 18:7182 ð615:6678Þ; c 3. mode: %o3 ¼ 28:4940 ð629:3568Þ;
d 4. mode: %o4 ¼ 39:2082 ð657:2888Þ:
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Fig. 4. Dimensionless basic natural circular frequency of the continuous floating bridge chapter 6 versus the proportion

of water depth to bridge length.
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frequencies for the hydroelastic vibrating beam compared with those ones of the vibrating beam
on elastic foundation is the effect of the dynamically activated fluid mass acting as an added mass
to the beam mass. This is also well-known fact in ship building.
If varying water depth d; we get the curve Fig. 4 for the basic related hydroelastic natural

circular frequency %o1 versus proportion d=l: According to Fig. 4 the basic hydroelastic natural
circular frequency approaches finite upper limit value with increasing water depth. The
phenomenon of decreasing hydroelastic natural frequency (or increasing hydrodynamic mass)
with decreasing water depth was already noticed by Wendel [28] in connection with bending
vibrations of ships in vertical direction. A possible reason for this phenomenon may be the rapid
decrease of the vertical component of flow velocity in shallow water simulating a heavy resonating
(fluid) mass.

4. Modal analysis of forced hydroelastic vibrations

In the following the hydroelastic beam vibration will be considered under the effect of a single
axle vehicle running with uniform speed along the beam. For the p ¼ 1; 2;y beam modes of the
homogeneous floating beam the following orthogonal relations exist according to Ref. [27]:

1

l

Z l

0

%c0p %c0qdx þ a3
1

l

Z l

0

%c1p %c1q dx � a2
1

l

Z l

0

%Fpðx; hÞ %c0q dx :¼
0 for qap;

%Mp for q ¼ p

(
ð31aÞ

and

a1
1

l

Z l

0

%c0p %c0q dx þ
1

l

Z l

0

%c2p %c2q dx :¼
0 for qap;

%Mp %o2p for q ¼ p:

(
ð31bÞ

The inhomogeneous partial differential equation (3) of the floating beam shall be solved using
the following series approaches:

*wðx; tÞ ¼ l
XN
p¼1

YpðtÞ %c0pðxÞ; ð32aÞ

Fðx; z; tÞ ¼ l2
XN
p¼1

’YpðtÞ %Fpðx; zÞ: ð32bÞ

These two approaches are inserted into the differential Eq. (3) using partial differentiation of
each term of the series considering definition (12b). After multiplying the resulting equation with
l %c0qðxÞ; q ¼ 1; 2;y and integrating each term from x ¼ 0 to l under consideration of the
orthogonal relations (31) we will get a system of coupled common second order differential
equations for the time functions YpðtÞ; p ¼ 1; 2;y The differential equations are coupled,
because the damping terms are multiplied with the integralsZ l

0

%c0pðxÞ %c0qðxÞ dx and

Z l

0

%c2pðxÞ %c2qðxÞ dx

for qap: If we acknowledge the value of integrals over the mixed mode functions (qap) as small
compared with the value of the integrals over the square of the mode functions (q ¼ p), then this
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so called comfortable hypothesis will allow the system of differential equations to be de-coupled
resulting in p ¼ 1; 2;y independent common differential equations

.Yp þ ’Ypop %Rp þ Ypo2p ¼ o2p %fpðtÞ; p ¼ 1; 2;y ð33Þ

with the dimensionless parameters

%Rp :¼
%rp

%op

; %rp ¼
1

%Mp

a4
l

Z l

0

%c20p dx þ
a5
l

Z l

0

%c22p dx


 �
; %fpðtÞ ¼

PðtÞ
%Mp %o2p

%c0pðctÞ
o2cmcl

2

and the dimensionless ‘‘generalized mass’’ %Mp according to Eq. (31a) as well as the definitions

oc :¼

ffiffiffiffiffiffiffi
EI

ml4

s
; a5 :¼

riI

mocl4
; a4 :¼

ra

moc

:

Considering the load function from Eq. (8) the solution of the differential equation (33) is the
dimensionless time function

YpðtÞ ¼ G1pðtÞ �
Z t

0

.v1ðtÞG2pðt; tÞ dt; p ¼ 1; 2;y: ð34Þ

In Eq. (34) the following two functions are well known:

G1pðtÞ ¼ c1pg1pðtÞ þ c2pg2pðtÞ þ
C

%Mp

Z t

0

½c0 þ c1g1ðtÞ þ c2g2ðtÞ� %c0pðctÞg1pðt � tÞ dt; ð35aÞ

where the two products standing before the integral term are the solution for the free vibration,
and

G2pðt; tÞ ¼
C

%Mp

c3 %c0pðctÞg1pðt � tÞ þ
Z t

t

%c0pðct�Þg1pðt � t�Þ½c4g1ðt� � tÞ þ c5g2ðt� � tÞ� dt�
� �

:

ð35bÞ

In Eqs. (35a) and (35b) the functions g1pðtÞ; respectively, g2pðtÞ are equivalent with the functions
g1ðtÞ; respectively, g2ðtÞ of Appendix B, but here have the different meaning

l2p :¼ o2p � d2p; p ¼ 1; 2;y in s�2

instead of l2Fz and

dp :¼ 1
2
op %Rp; p ¼ 1; 2;y in s�1

instead of dFz as well as

c1p :¼ dpYpð0Þ þ .Ypð0Þ in s
�1; c2p :¼ Ypð0Þ

and

C :¼
1

ml2
in kgf�1 s�2:

Each integrand of Eqs (35a) and (35b) has the same common demoninator. In case of zero
demoninator the integrals do not exist. This condition is fulfilled, if the vehicle damping reaches
the pth damping of beam, i.e.,

dp � dFz ¼ 0
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and if simultaneously the vehicle speed c reaches the critical limit

ccrit ¼

l

np
jjlpj7jlFzjj; l2pX0; l2FzX0;

l

np
lp; l2p > 0

8>><
>>: ð36Þ

with p ¼ 1; 3;y and n ¼ 2; 4;y from Eq. (15) for antimetric modes or with p ¼ 2; 4;y and
n ¼ 1; 3;y from Eq. (29) for symmetric modes. This case is equivalent with resonance under
stationary dynamic loading. Vehicle crossings are transient dynamic actions with finite beam
deflections also in non-damping case (cf. Ref. [1]).
Using Eq. (36), the following critical vehicle speeds can be calculated for the pontoon bridge

discussed in below Chapter 6:

p n ccrit in km/h

1 2 9.7
2 1 39.0
3 2 29.7
4 1 81.7

5. Acceleration and course of wheel load

The vertical movement v1ðtÞ of the wheel axle respectively of the wheel load PðtÞ at the
momentary station x1ðtÞ ¼ ct is according to Fig. 5 equivalent with the summation of

* the static beam deflection %w1ðtÞ :¼ %w1ðx1ðtÞÞ due to dead load,
* the dynamic beam oscillation *w1ðtÞ :¼ *wðx1ðtÞ; tÞ around the static beam deflection and
* the track unevenness u1ðtÞ :¼ uðx1ðtÞÞ;

ARTICLE IN PRESS

w (t) >0

w ( t) > 0

x
x  (t) = ct

c
P (t)
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1

10)t(u1 <
)t(v1

Fig. 5. - - - track level in case of weightless beam including surface roughness. —— track level in case of beam with dead

load including surface roughness. *wðx; tÞ=dynamic beam deflection (oscillation) due to traffic. %wðxÞ=static beam
deflection due to dead load. ||||||| uðxÞ=track un-evenness.
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i.e.,

v1ðtÞ ¼ %w1ðtÞ þ *w1ðtÞ þ u1ðtÞ:

The track unevenness uðxÞ shall be defined here as the distance between the bank level (u ¼ 0)
and the track contour including surface roughness of the weightless floating beam at rest
(downward direction u > 0). After the static beam deflection %wðxÞ has occurred due to dead load
and the ends of floating beam have been fixed on the banks, the track is assumed to have same
height with bank level (no step). From above summation formula it is derived

*w1ðtÞ ¼ v1ðtÞ � %w1ðtÞ � u1ðtÞ: ð37Þ

Inserting expression (37) of the dynamic beam oscillation into the left side of Eq. (32a)
describing the dynamic response of the vibrating beam at the momentary load station x1ðtÞ ¼ ct
and considering expression (34) of time function will result in the following integro-differential
equation for the course v1ðtÞ of the wheel load:

v1ðtÞ
l

¼
%w1ðtÞ

l
þ

u1ðtÞ
l

þ
XN
p¼1

G1pðtÞ %c0pðctÞ �
Z t

0

.v1ðtÞ
XN
p¼1

G2pðt; tÞ %c0pðctÞ dt

" #
: ð38Þ

According to [29] Eq. (38) can be replaced by two integral equations, from which one after
another the (vertical) acceleration of wheel load .v1ðtÞ and then the (vertical) course of wheel load
v1ðtÞ can be determined at any moment (see also Ref. [27]).
The acceleration of wheel load is part of the following first degree Volterra type integral

equation: Z %t

0

Gð%t; %tÞ %Fð%tÞ d%t ¼ Rð%tÞ; 0p%tp1 ð39Þ

with the kernel

Gð%t; %tÞ ¼ %t � %tþ
XN
p¼1

%G2pð%t; %tÞ %c0pðctð%tÞÞ

and the right side

Rð%tÞ ¼ �a212ða6 þ a7 %tÞ þ a212
%w1ðtð%tÞÞ

l
þ

u1ðtð%tÞÞ
l

� �
þ

XN
p¼1

%G1pð%tÞ %c0pðctð%tÞÞ

using the definitions

%t :¼ Ot; O :¼
c

l
in s�1; %FðvÞ :¼

.v1ðtð%tÞÞ
g

;

%G1pð%tÞ :¼ a212G1pðtð%tÞÞ; %G2pð%t; %tÞ :¼ a212
g

O
G2pðtð%tÞ; tð%tÞÞ;

a6 :¼
v1ð0Þ

l
; a7 :¼

’v1ð0Þ
lO

; a12 :¼ O

ffiffiffi
l

g

s
:

If the total passage time of the vehicle is divided into constant time steps, the integral equation
(39) leads to a recursion formula, from which the wheel load acceleration can be calculated at any
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moment of passage. From a second integral equation

v1ðtð%tÞÞ
l

¼
1

a212

Z %t

0

ð%t � %tÞ %Fð%tÞ d%tþ a6 þ a7 %t; 0p%tp1 ð40Þ

the course of wheel load can be derived time step by time step using the solution of Eq. (39).
According to Eq. (34) the acceleration of wheel load governs the time function YpðtÞ and the state
of the coupled hydroelastic system of fluid–beam–vehicle. Based on the above algorithms the
author developed a computer program, which is attached in Ref. [27]. The integrals within
functions (35a) and (35b) were solved by analytical methods.

6. Example

Analysis results shall be shown for a realistic floating bridge made of continuous steel plates
with hollow cross-section fully covering the fluid surface of a rectangular water filled basin hinged
to the bridge ends. Hydroelastic effects transverse bridges are neglected (rigid cross-section).
Therefore, hydrodynamic damping effects due to lateral wave radiation cannot occur (worst case).
Internal and external material damping will be neglected. The vehicle is simulated by an un-
sprung single mass passing the bridge with uniform speed along the centerline of the bridge from
the left bank to the right bank.
The system parameters according to Fig. 1 are given below as follows:

l ¼ 150m; b ¼ 7:30 m; d ¼ 2:80m; E ¼ 2; 100 t=cm2; I ¼ 47:414� 10�5 m4;

m ¼ 0:134 t s2=m2; rF g ¼ 1:0 t=m3; ri ¼ 0; ra ¼ 0:

The vehicle parameters according to Fig. 2 are given below as follows:

c ¼ 20 km=h; m1 ¼ 4:852 t s2=m; m2 ¼ 0; cFz ¼ 0; rFz ¼ 0:

The related dimensionless parameters a1, a2 and a3 according to Eq. (14b) are given with
Eq. (31). Fig. 3 shows the beam modes and natural circular frequencies of this floating bridge.
Fig. 4 shows the course of the related basic natural circular frequency of this bridge versus varying
water depth.
The track is assumed smooth and horizontal, so that for the course of wheel load the expression

%w1ðtÞ þ u1ðtÞ in Eq. (38) is zero (cf. Fig. 5).
Fig. 6(a) shows the related course of wheel load, v1=l; versus the related load position x=l using

a continuously drawn curve. Also the related beam deflection curve *w1=l versus the related load
position x/l is shown for the load positioned at mid-span (%t :¼ t 
 c=l ¼ 0:5) using dashed line and
beyond mid-span a little moment later (%t ¼ 0:51) using combined dashed-dotted line. Each
position of the wheel load is marked by a circle on the continuously drawn line v1=l: The wheel
runs along a curve, which characteristically starts oscillating with high amplitudes when the wheel
is approaching mid-span; afterwards the wheel will be even uplifted above the static bridge level
shortly before reaching the opposite bank. This phenomenon can be explained by quasi-resonant
behavior of the system, because here the applied vehicle speed c ¼ 20 km/h lies between the basic
and the second critical speed of the system (see table below Eq. (36)). Indeed, this phenomenon
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also can be watched in reality during passage of a heavy vehicle running on deck of a light weight
pontoon bridge with certain speed.
According to definition, the momentary dynamic beam deflection curve coincides with the

surface waves of the sloshing fluid. The shift of beam deflection curves alias surface waves shown
in Fig. 6(a) within the considered time step indicates surface waves of progressing type near mid-
span and those ones of standing type near the supports. The nature of surface waves determines
the water flow. Fig. 6(b) shows the vector field of flow velocity within the whole fluid area, when
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Fig. 6. (a,b) Dynamic state of floating bridge during passage by uniformly moving single mass. (a) course of wheel load

(——) and momentary beam deflection curve at time %t ¼ 0:5 (- - -) and %t ¼ 0:51(– 
 – 
 – 
 ) (b) Flow velocity vectors
within the whole fluid at time %t ¼ 0:5:
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the load reaches at mid-span, i.e., the streamlines at half the passage. It can be clearly seen, how
the water is going to flow into hollow parts caused by the progressing beam deflection curve.
The fluid flow here resembles the situation in case of gravity waves with free surface (cf.

Ref. [30]): The water volume is divided into several columns along the beam, which are separated
from each other by a vertical flow sheath. The flow within one such column occurs more or less in
horizontal direction, i.e., parallel the bottom of water bed, and is sharply diverted into vertical
direction close to the flow sheath (cf. Ref. [31]).
Fleischer [27] made an estimation on the impact of the non-linear term of fluid pressure rF v2=2

in Eq. (2) using the fluid velocities, which result from the linear theory. This estimation shows,
that compared with the linear fluid pressure the effect of non-linear fluid pressure can be neglected
behind the vehicle, but in front of the vehicle the non-linear fluid pressure partially can reach the
magnitude of the linear fluid pressure and thus should be considered there. This statement is valid
especially, if the uniform vehicle speed c lies within a certain range depending on the system
parameters. For vehicle speeds outside this range the application of the linear theory is deemed
sufficient in the whole region.

7. Case studies

Fig. 7 shows the impact of parameter variations on the course of wheel load, v1/l, and the
momentary dynamic beam deflection curve, when the vehicle reaches at mid-span (%t ¼ 0:5), and
short time later (%t ¼ 0:51). Only one parameter will be changed each, all others will be kept same
as chosen in above chapter 6, respectively Fig. 6.
Fig. 7(a) is based on applying an extremely low vehicle speed c ¼ 0:001 km/h equivalent

to quasi-static passage. The course of wheel load as well as the momentary beam deflection
curve show characteristic reactions of a beam on elastic foundation. The strange upward
convexity of the beam deflection curve above the static bridge level is caused by the compen-
sation condition according to Eq. (7), as the water surface shall be fully covered by the bridge
deck.
Fig. 7(b) is based on applying the vehicle speed c ¼ 40 km/h, which practically can be deemed

maximum speed to safely cross long light weight pontoon bridges. As this vehicle speed is close to
the (second) critical speed 39.0 km/h (see table below Eq. (36)), the bridge shows resonant effects
during vehicle passage, which are more severe than for half the speed as used in case of Fig. 6.
Compared with Fig. 6(a), there are larger number of up and downs of the vehicle course as well as
of the beam deflection curve with more peaks above static bridge level especially during the second
half of the passage, but obviously having lower amplitudes.
Fig. 7(c) is based on the water depth d ¼ 50m, which is more than 17 times the depth in case of

Fig. 6. Here, the type of passage is much more balanced than in case of Fig. 6(a): The course of the
vehicle stays below the static bridge level (like in the quasi-static case Fig. 7(a)) and the up and
downs of the curves are moderate. This obviously less severe dynamic response of the concerned
floating bridge on deep water (d ¼ 50m) compared with that one on shallow water (d ¼ 2:80m)
can be explained by non-resonant behavior of the system. According to Fig. 4 and Eq. (36) the
basic critical vehicle speed here is 35.7 km/h, which is 1.78 times higher than the applied one
20 km/h.

ARTICLE IN PRESS

D. Fleischer, S.-K. Park / Journal of Sound and Vibration 273 (2004) 585–606 601



Fig. 7(d) is based on a reduced beam stiffness compared with the case of Fig. 6, that can occur
due to tolerances in the connecting parts of the bridge deck elements. Here, the extreme reduction
by 90% of the original stiffness is considered. The result is a vehicle course and beam deflection
curve similar to Fig. 6(a), but obviously having lower amplitudes.
Fig. 7(e) is based on a bridge with length l ¼ 50m, which is only one third of the bridge length

in the case of Fig. 6. The result is a vehicle course and beam deflection curve similar to Fig. 6(a)
with trend for smaller amplitudes and a huge bow wave in front of the vehicle bending the beam
arch like up to the opposite bank.

8. Summary

The coupled problem of fluid–beam–vehicle interaction is investigated considering the linear
potential theory of fluids and is solved for plane fluid flow using modal analysis. The analyzed
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Fig. 7. Course of wheel load v1=l (——) and momentary beam deflection curve at time %t ¼ 0:5 (- - -) and %t ¼ 0:51(– 
 – 
 – 
 )
of floating bridge during passage by uniformly moving single mass for different parameters: (a) speed c ¼ 0:001 km/h;
(b) speed c ¼ 40 km/h; (c) water depth d ¼ 50m; (d) moment of area I ¼ 4:7414� 10�5; (e) bridge length l ¼ 50m.
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example and case studies show the characteristics of dynamic response of the considered
hydroelastic system. Also limits of the applied linear theory are indicated.

Appendix A

Explanation and derivation of Eq. (3):
In the following all dynamic internal forces and deformations of the beam element are marked

with the B symbol:

a) Dynamic loading and reactions on beam element 

b) Beam fiber model and dynamic bending moment 

c)  Dynamic equilibrium of beam element 





Fiber 

w″Irw″EI . M i−    −=
.~~~

dx x 

Elasticity E

Viscous material damping ir

V
~ ϕ 

ρ ρ 

~

dx 

M
~

dxM′M  + ~ ~

deflectionbeamdynamic~ =w

h = static beam deflection 

dxVV ′ + ~~

wra
. .

.

~external viscous damping 

hydrodynamic pressure ( )thxbwgb FF ,,~ Φ −

x 

f(x,t) 

elastic foundation 

For simplicity, the following definitions on symbolizing partial differentiation will be introduced:

’*w :¼
@ *w

@t
; ’F :¼

@F
@t

; *w0 :¼
@ *w

@x
: ðA:1Þ

Higher partial differentials will be treated in analogous manner.
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The sum of forces in vertical direction is according to above sketch (a)

m .*w dx ¼ *V0 dx � ra
’*w dx � rF gb *w dx þ rF b ’Fðx; h; tÞ dx þ f ðx; tÞ dx

and after deleting dx

m .*w ¼ *V0 � ra
’*w � rF gb *w þ rF b ’Fðx; h; tÞ þ f ðx; tÞ: ðA:2Þ

The sum of moments is according to above sketch (a) if neglecting terms with squares of dx

rI .*j dx ¼ � *M0dx þ *V dx

and with term for *M from above sketch (b) after deleting dx

rI .*j ¼ EI *w000 þ riI ’*w
000 þ *V: ðA:3Þ

From Eq. (A.3) it follows:

*V0 ¼ rI .*j0 � EI *w0000 � riI ’*w
0000: ðA:4Þ

Inserting Eq. (A.4) into Eq. (A.2) will give

m .*w ¼ rI .*j0 � EI *w0000 � riI ’*w
0000 � ra

’*w � rF gb *w þ rF b ’Fðx; h; tÞ þ f ðx; tÞ:

Resolving this equation to the external continuous load function f ðx; tÞ on the right-hand side
and considering the relation

*j0 ¼ *w00

will result into

m .*w � rI .*w00 þ rF gb *w � rF b ’Fðx; h; tÞ þ EI *w0000 þ ra
’*w þ riI ’*w

0000 ¼ f ðx; tÞ: ðA:5Þ

If in Eq. (A.5) the partial differentials will be substituted by the symbols according to above
definitions (A.1), and if the continuous load function on the right-hand side shall describe the time
dependant discrete contact force PðtÞ of a single axle vehicle running with constant velocity c using
Dirac’s function .a (see Ref. [1, p. 14]):

f ðx; tÞ ¼ dðx � ctÞPðtÞ

it will give the partial differential Eq. (3) of Chapter 2

m
@2 *wðx; tÞ

@t2
� rI

@2

@t2
@2 *wðx; tÞ

@x2

� �
þ rF gb *wðx; tÞ � rF b

@Fðx; h; tÞ
@t

þ EI
@4 *wðx; tÞ

@x4
þ ra

@ *wðx; tÞ
@t

þ riI
@

@t

@4 *wðx; tÞ
@x4

� �
¼ dðx � ctÞPðtÞ: ðA:6Þ
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Appendix B

Related to Eq. (8) and Fig. 2:

K0 ¼ ðm1 þ m2Þg in kgf ;

K1 ¼ cFz 1þ
m1

m2

� �
¼ o2Fzðm1 þ m2Þ in kgf m

�1;

K2 ¼ rFz 1þ
m1

m2

� �
¼ 2dFzðm1 þ m2Þ in kgf m

�1 s;

K3 ¼ m1 in kgf m
�1 s2;

dFz ¼
rFz

2m2
in s�1 ðdamping constantÞ;

o2Fz ¼
cFz

m2
in s�2 ðnatural circular frequencyÞ;

l2Fz :¼ o2Fz � d2Fz in s
�2 ðnatural circular frequency of the damped systemÞ;

c0 ¼ K0 in kgf ;

c1 ¼ ½K1dFz þ ðK3dFz � K2Þo2Fz�yð0Þ þ c4 ’yð0Þ in kgf s
�1;

c2 ¼ ðK1 � K3o2FzÞyð0Þ þ c5 ’yð0Þ in kgf ;

c3 ¼ K3 in kgf m
�1 s2;

c4 ¼ K1 � K2dFz þ K3ð2d
2
Fz � o2FzÞ in kgf m

�1;

c5 ¼ K2 � 2K3dFz in kgf m
�1 s;

g1ðtÞ ¼
sin lFzt
lFz

e�dFzt in s; g2ðtÞ ¼ e�dFzt cos lFzt for l2Fz > 0;

g1ðtÞ ¼
sinhjlFzjt

jlFzj
e�dFzt in s; g2ðtÞ ¼ e�dFzt coshjlFzjt for l2Fzo0;

g1ðtÞ ¼ te�dFzt in s; g2ðtÞ ¼ e�dFzt for l2Fz ¼ 0:
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